Rendering Clouds using
OpenGL Fragment
Shaders

CS184 - Spring 2021
William Dai
Callam Ingram
Roman Taylor
Zachary Young

APRIL 20, 2021/ R/EDIT

2D Worley Noise

First task in generating realistic clouds was to pick pick an implementation approach. We
settled on Worley Noise technique. The idea is to scatter random points all over the screen
and find the distance between every pixel and it's closest point. Then, we would use that
distance to shade every pixel with a value between 0 and 255 scaled by the distance.

To test our 2D Worley Noise generation algorithm, we used a simple LodePNG library in order
to generate .png files.

First we shaded the background in white color and

randomly generated n points. At this stage there is an S5 s
optimization worth mentioning: evenly subdivide the e
screen into rectangles and place only one random point

per rectangle. This way, every pixel in the scene has to s

be checked only against a rectangle it belongs to in . B
addition to neighboring rectangles. o

Next we found a closest distance between each random
point and every pixel in the scene. Normalized by max
distance and multiplied by 255 - we now able to shade
our scene. The figure displayed on your right is the
inverted result [255 - normalized_distance].

Posted In Tasks

-~ -/ ENT

3D Worley Noise

After testing our Worley Noise algorithm in 2D, we extended it to work in 3D space. The
computational demand of our algorithm was really high because we had to calculate the
max_distance(every_pixel, every_random_worley_point).

In order to minimize the computations, we split up the cube into sub-sections and placed one
random point in each sub-section. Now, every pixel has to check it's distance against random
worley noise points located in 26 adjacent sub-sections in addition it's own section (total of 27
checks per pixel).

Red dots: Worley Noise Red Dots: Worley Noise

White dots: Cell boundaries White Dots: Density Worley Noise

The biggest challenge was in blending cube edges as we replicated the Worley Noise. In short,
for the sub-sections touching the outter-planes of the cube, we had to offset our worley noise
points to the correct location in order to compute correct distances.

APRIL 26, 2021/R/EDIT
e L
Prior to Ray Tracing
Prior to ray tracing, we generated a bounding box structure using two 3-dimensional points.

The two points represent rear-leftmost-
lower point & front-rightmost-upper
corners of the bounding box. These
points enabled us to shift x, y, and z
coordinates to obtain the remaining 6
corners (total of 8).

Given the 8 corners, we were able to
generate 12 lines outlining our volume
using GL_LINES primitive (please see
thin orange outline). Then, from the same
points, we generated 12 triangles
representing our bounding volume
planes (please see light blue & 50%
transparent walls). These were done
using GL_TRIANGLES primitive.

Lastly we have added three sliders to our GUI in order to manipulate the bounding box:
length x, length y, and length z. These simple parameters allow us to easily resize the
bounding box volume in three dimensions.

